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Transforming complex multistability to controlled monostability

Binoy Krishna Goswami*
Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India

Sourish Basu†

Department of Physics, Indian Institute of Technology, Mumbai 400076, India
~Received 25 August 2001; revised manuscript received 21 May 2002; published 27 August 2002!

Multistability, a commonly observed feature among nonlinear systems, could be inconvenient under various
circumstances. We demonstrate that a control in the form of slow and weak periodic parameter modulation can
be effectively applied to transform a complex multistable system to a controlled monostable one. For the
representative of a nonlinear system, we choose the He´non map as the standard model. The number of
coexisting stable states is known to increase as the dissipativity reduces. We show that even in the low
dissipative limit, when the number of coexisting states could be arbitrarily large, the periodic parameter
modulation can destroy the states coexisting with stable period 1. Thus, the system can be brought from any
other branch to period-1 branch, leading to controlled monostability. This method works in the presence of
noise as well.
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Nonlinear dynamical systems, having large dimension~in
the phase space! or ~and! under low dissipation, commonly
exhibit multistability, i.e., coexistence in the phase space
several stable states~sinks! when the system parameter va
ues remain unchanged. Systems with two sinks~bistability!
and the associated hysteresis are well known. A more c
plex form of multistability~several periodic or chaotic state!
has also been observed in various systems, including2
lasers @1–4#, semiconductor lasers@5–7#, nonlinear elec-
tronic circuits@8#, voltage controlled buck converter@9#, the
Rayleigh-Bernard experiment@10#, thermal hydraulics in
two-phase natural circulation loops@11#, cardiac dynamics
@12#, and periodically stimulated neuron@13#; in addition to
some standard models, under periodic forcing or parame
excitation, such as Duffing, van der Pol@14#, and Toda os-
cillators@15,16#.1 Under several circumstances, multistabili
can create inconveniences. We outline very briefly some
these issues.

~i! If a system is designed to remain at a certain dyna
cal equilibrium, a jump to a coexisting sink may change
performance and spoil the reproducibility and hence relia
ity. We believe there are many applications~devices! where
multistability should therefore be avoided. For instan
rapid progress has been taking place in research and tec
ogy development in the area of optical fiber communicat
@17,18#. This has led to the development of a variety of sem
conductor lasers~amplifiers!, doped fiber lasers~amplifiers!,
in addition to vast improvement in optical fiber technolo
and other accessories. A very basic phenomenon involve

*Email address: bgoswami@apsara.barc.ernet.in
†Email address: n9026014@ccs.iitb.ac.in
1The primary origin of multistability in periodically forced non

linear systems may be sought in harmonic and various subharm
resonances. The overlap of these resonances in the parameter
gives rise to multistability.
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optical fiber communication is signal transmission~amplifi-
cation! through a light-wave carrier. This process may
compared to the dynamics of a driven nonlinear syst
which can exhibit multistability. Indeed, semiconductor l
sers, and~doped! optical fibers exhibit a wealth of nonlinea
optical phenomena@18#, including various bifurcations
chaos@19#, and multistability under current~pump! modula-
tion @5# or optical injection@6,7#. We believe, multistability
would pose inconvenience in efficient communication a
thus needs to be avoided.

~ii ! In some applications, in addition to reliability an
reproducibility, the more important issue is the safety of t
installation and the neighborhood. As an example, we re
to the two-phase natural circulation loops that have ma
applications including the future generation natural circu
tion nuclear reactors@11,20#. In nuclear reactors, the coolan
flow design is crucial to avoid all sorts of instabilities th
may lead to a holocaust. Therefore, multistability might
inconvenient while designing the operating regime~the per-
mitted region of operation in the parameter space! of the
coolant flow.

~iii ! A deterministic nonlinear dynamics approach has
tered various disciplines, including Cardio Science. The tr
sition from a normal cardiac rhythm to arrythmia has be
observed to follow period doubling route to chaos@21#. Car-
diac alternans~period-2 rhythm! could be a precursor to ar
rythmia and therefore efforts have been made to devise s
controls. Indeed, the chaos control@22# and tracking@23#
techniques have been successfully applied to suppress
diac alternans and stabilize the cardiac rhythm in the
stable period-1 state@24#. Notably, under certain circum
stances, a stable period-2 rhythm can coexist with the st
period 1 @12#. In such cases, changing the cardiac rhyth
back to stable period-1 state might be an attractive prop
tion.

Thus we have briefly mentioned some of the areas wh
multistability would be undesirable. Such disturbances of
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BINOY KRISHNA GOSWAMI AND SOURISH BASU PHYSICAL REVIEW E66, 026214 ~2002!
also restrict the operating regimes of the system. Also, pr
lems can become more acute when the basin boundarie
come fractal@25#. Because, under such circumstances, if
transients place the system close to a basin boundary,
noise~which is unavoidable in many experimental and re
life systems! can lead to a transition from one basin to a
other. In order to control multistability, Poon and Grebo
@26# have proposed a method where the system is placed
~or removed from! some sink by applying noise and fee
back control. In spite of its applicability in general, und
certain circumstances, some difficulties may still remain.
instance, if we want to bring the system to the stable per
1 from a coexisting sink by some fast and determinis
method, then the application of noise may not be an effic
proposition. An alternative approach could be transform
the multistable system to a monostable one by some con
mechanism. Pisarchik and Goswami@27# have recently pro-
posed a method of converting a bistable system to a c
trolled monostable system by a slow and weak modulation
some system parameter. They have theoretically dem
strated the method in the He´non map@28# and laser rate
equations@29#, and experimentally realized in a CO2 laser. In
the experiments, the CO2 laser was made bistable by a cavi
loss modulation. Next, the bistability is controlled by a slo
and weak modulation of resonator cavity length. The ba
idea in this controlling method is to introduce a collision
the undesirable state with its basin boundary~the stable
manifold of the neighboring saddle!, so that such a state i
destroyed and the transients settle down to the desired b

In the current paper we study the applicability of th
technique when the system exhibits coexistence of an a
trarily large number of coexisting sinks. For the represen
tive of a nonlinear system, we choose the He´non map@28#
described byxn11512mxn

21yn , and yn1152Jxn .2 The
Hénon map is considered as a standard theoretical mode
the continuous-time experimentally realizable~real-world!
systems. The iteratesx andy may be considered as two pro
jected dynamical variables. The parameterJ may be related
to the dissipativity, andm represents an externally contro
lable parameter. The He´non map and Toda oscillator3 have
shown striking similarity in the self-similar organization o
the secondary cascades@16,35#. Such similarity could be be
cause both have a similar hyperbolic horseshoe@36#. Nota-
bly, the bifurcation structures of a large number of driv
nonlinear systems, including the Duffing and Toda osci
tors, exhibit qualitative similarity@37#. Therefore, the He´non
map might be all the more suitable for the driven lo
dimensional systems, e.g., CO2 and semiconductor lasers

2The Hénon map reduces to one-dimensional quadratic map
J50. Multistability occurs whenJ.0 @30#.

3The Toda oscillator is a well-known model of CO2 and semicon-
ductor lasers. The recent experiments on multistability in perio
cally forced CO2 laser @4# have shown good agreement with th
theoretical predictions@15# on the basis of the Toda oscillator mod
@31# of laser rate equations@1,32#. Moreover, laser rate equations o
semiconductor lasers@5#, and vibro rotational model of CO2 lasers
@33,34# also reveal the Toda oscillator form.
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nonlinear electronic circuits, etc. We also expect that
technique demonstrated in the He´non map may as well be
effective in controlling multistability in other nonlinear sys
tems including cardiac rhythms, and thermal hydraulics.

The number of coexisting attractors is known to increa
as the dissipativity of the system reduces. We consider
extreme situation, i.e., at the near-conservative~low-
dissipative! limit when the number of coexisting states cou
be arbitrarily large. We show that even under such circu
stances, the periodic modulation of some system param
may be effectively applied to transform such an exceedin
complex multistable system to a controlled monostable o
We also demonstrate the applicability of the method in
presence of noise.

Since the He´non map is a two-parameter map, the ord
of occurrence of the sinks~as one changes the value ofm for
a given value ofJ) can change as the value ofJ changes
@38#. However, the sinks are not created in a totally arbitra
manner. Mindlin et al. @39# have shown~by means of a
horseshoe implication diagram! that a minimal set of peri-
odic orbits can be constructed, which force the existence
all the remaining periodic states associated with a stra
attractor, up to any given period. In fact, a large class
periodic and chaotic orbits are created in the phase and
rameter space in an organized manner@35#. We explain the
organization in brief to highlight the associated compl
multistability. We consider a low dissipative case (J50.98)
and increase the value ofm as the control parameter. Figur
1~a! shows the bifurcation diagram of the period-1 bran
~denoted byp1). Notably, around each sink of the period
branch, an infinitely large series of periodn-tupled saddle
nodes seems to appear in the following sequencen
5 . . . ,5,4,3). Each newly born node~say of periodn) later
constitutes its own branch~first-order secondary cascade!,
denoted bypn . For instance, period-5, -4, -3 cascades
shown to coexist with period 1 in Fig. 1~b!. Again, around
each sink of every secondary cascade, an infinitely large
ries of periodn-tupled saddle nodes seems to appear follo
ing the same sequence. Each node later constitutes its
branch~second-order secondary cascade!. For example, Fig.
2~a! shows period-20, -16, -12 cascades, each coexis
with the period 4 of period-4 branch. Figure 2~b! shows
period-25, -20, -15 cascades, each coexisting with the pe
5 of period-5 branch. These processes recur in a self-sim
manner, giving birth to higher and higher-order second
cascades; more evidence of the creation of higher-order
cades may be seen in Ref.@35#. Each cascade survives withi
a small subinterval of the control parameter window whe
the respective sink from the immediate lower-order seco
ary cascade exists. Thus, subject to the choice of param
values, the number of coexisting sinks could be arbitra
large. In principle, in an infinitely large number of parame
values, there could be an infinitely large series of coexist
sinks. This scenario suggests an exceedingly complex m
stability, although organized in a self-similar manner.4

r

i-

4The creation of sinks is in good agreement with the predictions
Gavrilov and Silnikov@40#, Newhouse@41#, and Robinson@42#.
More detail in this regard may be seen in Ref.@35#.
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TRANSFORMING COMPLEX MULTISTABILITY TO . . . PHYSICAL REVIEW E66, 026214 ~2002!
We apply sinusoidal control modulation overm as m(n)
5m01h sin(2pnn). By ‘‘slow’’ modulation we imply that
the period of modulation (1/n) is much larger than the perio
of the sink to be controlled. Also, by ‘‘weak’’ modulation w
imply that the addition ofh over m in the uncontrolled case
will lead to no bifurcation of the sink. We demonstrate tha
the system exists in any secondary cascade, one can de
that cascade by control~in the form of a slow and weak
periodic modulation overm) and bring the system to th
period-1 branch. Since within a branch, the largest param
window is that of the first sink, for control we choose th
value ofm0 such that the uncontrolled case refers to the fi
sink of the given secondary cascade to be destroyed.5 We
shall see later that the control modulation induces the
struction of the sink after the creation of a sequence of pe
doubling in control frequency. After destruction, the chao

5Other sinks of a given branch can also be destroyed by a sim
control. Under such circumstances, the value ofm0 has to be chosen
such that the uncontrolled case refers to the given sink. In gen
the required control amplitude to destroy these sinks is much
than that required for the destruction of first sink.

FIG. 1. ~a! Bifurcation diagram of the period-1 branch (p1). ~b!
Successive appearance of a series of first-order secondary cas
namely, period -5, -4, and -3 branches, around the period 1.
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transients jump to the basin of the neighboring sink from
immediate lower-order secondary cascade. In the follow
figures where we show the controlled scenario, the contro
first sink of apn branch is also denoted bypn . Each bifur-
cation diagram of the controlledpn has been plotted with
sampling period (1/n). We demonstrate some examples
controlled destruction starting from second-order second
cascades. Figure 3~a! shows the controlled destruction ofp12
and subsequent jump top4. Figures 3~b! and 3~c! show a
similar controlled destruction ofp16 and p20, respectively.
Each destruction is followed by a transition top4. In Fig.
3~d!, the values ofm0 andn have been kept same as in th
case ofp16 destruction. Next by increasingh, p4 gets de-
stroyed and the chaotic transients jump to period 1 (p1). A
similar destruction ofp4 also occurs when the value ofm0 is
set anywhere, including in the parameter subintervals wh
other second-order secondary cascades, viz.,p12 andp20 ex-
ist. Figures 4~a–c! show similar destruction ofpn (n
515,20,25) branches respectively. In each case, the sy
jumps top5. In Fig. 4~d!, we keep the values ofn and m0

ar

al,
ss

des,FIG. 2. Successive appearance of second-order secondary
cades around the period-4 sink ofp4 branch, and around the
period-5 sink ofp5 branch.~a! Period-20, -16, -12 cascades arou
period 4. The sampling period is four.~b! Period-25, -20, -15 cas
cades around period 5. The sampling period is five.
4-3
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BINOY KRISHNA GOSWAMI AND SOURISH BASU PHYSICAL REVIEW E66, 026214 ~2002!
same as in the case ofp20. Then by increasingh, p5 is
destroyed and the transients jumps to period 1. A sim
destruction ofp5 can also be observed when the value ofm0
is set anywhere, including in the parameter subinterv
where other second-order secondary cascades, viz.,p15 and
p25 exist. In Fig. 5, we show enlargments of the previou
shown bifurcation diagrams to illustrate the sequence of
riod doubling in control frequency before the destructio
Figures. 5~a! and 5~b! show the magnified results of con
trolled p12 and p4, respectively. In each case, one notice
period doubling route~s! to chaos. The lifetime of the chaoti
transient depends on how far the chosen parameter valu
from the respective boundary crisis threshold@30#. There-
fore, if the value of the control amplitude is sufficiently ov
the destruction threshold, the time span of chaotic transi
can be reduced significantly. Moreover, a jump to a low

FIG. 3. ~a!–~c! Bifurcation diagrams show the controlled d
structions of some second-order secondary cascades, born a
period 4;n50.005.~a! p12 (m050.177),~b! p16 (m050.142), and
~c! p20 (m050.121). After each destruction, the transients jum
@shown by arrow~s!# to period 4 (p4). ~d! Bifurcation diagram of
controlled period 4 (p4) shows its destruction and jump to period
(p1); m050.142; n50.005. Enlargements of the bifurcation di
grams in plots~a! and ~d! are shown later in Figs. 5~a! and 5~b!,
respectively.
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order cascade does not always need the system to bec
chaotic as a precursor. Such a jump can occur even prio
chaos. For instance, Fig. 5~c! shows that no period doubling
occurred in controlledp15 before the jump top5. Figure 5~d!
shows that the controlled period 20 undergoes just two s
of period doubling followed by two steps of an inverse p
riod doubling before being destroyed in a similar manner

Figure 6 shows the destruction curves of these cascad
(h versusn) parameter subspace; we consider the case of
destruction of first sinks only. In Fig. 6~a–c! we compare the
destruction thresholds of some second-order secondary
cades versus those of the respective first-order secon
cascades. The destruction curve of a second-order cas
say pn , is denoted byCn . Cm,n represents the destructio
curve of the period-m branch~a first-order secondary cas
cade! whenm0 is kept same as in the case of the destruct

undFIG. 4. ~a!–~c! Bifurcation diagrams show controlled destru
tions of some second-order secondary cascades, born around p
5 (p5); n50.005. ~a! p15 (m0520.259), ~b! p20 (m0520.286),
~c! p25 (m0520.305). After each destruction, the chaotic transie
jump ~shown by an arrow! to period 5. Enlargements of bifurcatio
diagrams in plots~a! and~b! are shown later in Figs. 5~c! and 5~d!.
~d! Bifurcation diagram of controlledp5 shows its destruction and
transition ~shown by an arrow! to period 1 (p1); m0520.286; n
50.005.
4-4
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TRANSFORMING COMPLEX MULTISTABILITY TO . . . PHYSICAL REVIEW E66, 026214 ~2002!
of pn branch~a second-order cascade!. For instance, in Fig.
6~a!, the destruction curves of period 12 and period 15
denoted byC12 andC15, respectively. This plot also show
the destruction curve ofp3 branch whenm0 is kept the same
as in the case of the destruction ofp12 and p15 branches.
These destruction curves are denoted byC3,12 and C3,15,
respectively. This plot reveals that for a broad range
modulation frequency,p12 and p15 can be destroyed at
lower modulation amplitude in comparison to that requir
for p3 destruction. Similarly plot~b! reveals that the destruc
tion thresholds ofp16 andp20 are much smaller in compari
son to that required forp4. Plot ~c! shows that the destructio
thresholds ofp20 andp25 are much smaller in comparison t
that required forp5. Thus, for any modulation frequency,
one increases the control amplitude appropriately,
second-order cascades can be destroyed and the chaotic
sients would settle in the respective first-order cascades
plot ~d!, C1,12 and C1,15 denote the bifurcation curves fo
period doubling from period 1 when the values ofm0 are
kept same as in the case of the destruction ofp12 and p15,

FIG. 5. Enlargements of some bifurcation diagrams shown
lier in Figs. 3 and 4;n50.005. ~a! p12 (m050.177), ~b! p4 (m0

50.142), ~c! p15 (m0520.259), and~d! p20 (m0520.286). ~a!
and~b! show period doubling route to chaos.~c! Controlled period
15 does not undergo any period doubling.~d! Controlled period 20
undergoes just two steps of period doubling followed by two st
of inverse period doubling.
02621
e

f

e
ran-
In

respectively.C4,12 denotes the destruction curve ofp4 when
the m0 is kept same as in the case ofp12. Similarly, C5,15
denotes the destruction curve ofp5 when them0 is kept same
as in the case ofp15. Plot ~d! shows that the controlled
period doubling from period 1 requires a much larger va
of h in comparison to those required for the destruction
p4 andp5.

Thus our observations suggest the following features
general.

~i! The control amplitude to destroy a givennth-order
secondary cascade is much less in comparison to tha
quired for the destruction of the neighboring (n21)th-order
secondary cascade. Consequently, after the destruction o
nth-order secondary cascade, the system jumps to the res
tive (n21)th-order secondary cascade.

~ii ! The control amplitude required for period doublin
(1→2) in the period-1 branch is much larger in comparis
to that required for the destruction of any first-order seco
ary cascade. As a consequence, after the destruction

r-

s

FIG. 6. Controlled destruction curves, denoted byCn or Cnm .
~a! Period 12 (m051.103), period 15 (m051.072), and period 3 a
both the m0 values. ~b! Period 16 (m050.142), period 20 (m0

50.121), and period 4 at both them0 values.~c! Period 20 (m05
20.286), period 25 (m0520.305), and period 5 at both them0

values.~c! Period 4 (m050.177), period 5 (m0520.259), and the
controlled period doubling (1→2) bifurcation curves at both the
m0 values.
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BINOY KRISHNA GOSWAMI AND SOURISH BASU PHYSICAL REVIEW E66, 026214 ~2002!
first-order secondary cascade, the system jumps to
period-1 branch.

Therefore, if we know the period of the state to be d
structed, we can set some appropriate slow control freque
and then as we increase the control amplitude beyond
respective destruction threshold, the state can be destr
and the system will jump to the immediate lower-order s
ondary cascade. Again by increasing the control amplit
further, the new state can also be destroyed and the sy
will then jump to a further lower-order secondary casca
Subject to enough increase of the value ofh, this process can
go on in a recursive manner till the system jumps to
period-1 branch. This process does not require anya priori
information about the destruction threshold of various s
ondary cascades. It needs a gradual increase of the co
amplitude and monitoring till the system returns to t
period-1 branch. In this process, the transition top1 will
occur via a sequence of jumps among the hierarchy of
ondary cascades, viz., thenth-order secondary cascade→
(n21)th-order cascade→ . . . → first-order cascade→p1.
Such jumps within secondary cascades can be reduced
the system can be straightway brought to any lower-or
~saynth! secondary cascade~period-1 branch! when the de-
struction threshold of the respective (n11)th ~first! -order
secondary cascade is knowna priori. Then the control am-
plitude can be set straightway higher than the destruc
threshold of the respective (n11)th ~first! -order cascade
This would lead to a direct transition to thenth secondary
cascade~period-1 branch! instead of a sequential transitio
through the secondary cascades. We shall show some
amples of such a direct transition to period-1 branch in F
11.

To show the applicability of the control in the presence
noise, we introduce Gaussian white noise (j and f) in the
Hénon map as follows:xn11512mxn

21yn1jn , and yn11

52Jxn1fn . We consider for simplicity both noise term
having zero mean and identical standard deviation (s). Sub-
ject to the strength of noise~determined by the standard d
viation!, the dynamics of a nonlinear system, in gener
could be complex. This is where the basins of attraction p
a significant role. Noise of adequate strength can induc
spontaneous transition from one basin to another. Even
system may get further disturbed, leading to intermitt
transitions among the coexisting basins. On the other han
a basin is broad enough, scenario could be different. Un
such circumstances, even though noise can induce rand
ness~and hence transients!, the dissipativity of the system
would always attempt to pull and retain the system ba
within the same basin. As a consequence, no such trans
or intermittancy may occur. We have studied the basins
various secondary cascades in the He´non map.6 The basins of
higher-order secondary cascades appear and always re
within the basins of the immediate lower-order second

6The creation and evolution of basins in the case of the He´non
map are similar to those in the case of the Toda oscillator@16#. In
this paper, we concentrate on controlling multistability, and lea
the basin evolutions for a different paper.
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cascades. Higher the order of the cascades, smaller thei
sins become progressively. Consequently, the effect of n
would be more prominent for the higher-order second
cascades. We will show later a strong noise-induced tra
tion ~without control! from higher-order to lower-order sec
ondary cascades. First we analyze the effect of mode
noise when no such transition takes place. Figure 7~a! shows
the bifurcation diagram of the uncontrolledp16 branch
~around period 4 ofp4 branch! in the presence of noise (s
50.001). Past the boundary crisis ofp16, the transients con-
verge top4. Since, the basin of period 4 is comparative
larger, the p4 branch can withstand a relatively strong
noise. Figure 7~b! shows the bifurcation diagram ofp4
around period 1 when the standard deviation of noise is r
tively high (s50.005). Beyond the boundary crisis ofp4,
the transients settle to period 1@Fig. 7~b!#. We demonstrate

e

FIG. 7. ~a! Uncontrolled period-16 branch (p16) around period 4
(p4) in the presence of noise (s50.001). Sampling period is four
~b! Uncontrolled period-4 branch (p4) around period 1 (p1) in the
presence of noise (s50.005).~c! Controlledp16 gets destroyed and
the system jumps~shown by arrows! to p4 ; m050.142; n
50.005; s50.001.~d! Controlled noisyp4 gets destroyed and th
system jumps~shown by an arrow! to period 1; m050.12; n
50.005; s50.005.
4-6
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TRANSFORMING COMPLEX MULTISTABILITY TO . . . PHYSICAL REVIEW E66, 026214 ~2002!
the effect of control on noisyp16 by introducing the modu-
lation overm. By increasing the control amplitude (h), we
observe a destruction ofp16 @Fig. 7~c!# and consequent tran
sition to period 4~shown by an arrow!. A similar destruction
can also be observed in the case of noisyp12 andp20. Each
destruction would be followed by a transition to noisy peri
4 (p4). Next, p4 can also be destroyed by increasing t
control amplitude (h) when the value ofm0 is kept fixed
anywhere, including in the parameter subintervals where
second-order secondary cascades, viz.,p12, p16, andp20 ex-
ist. In Fig. 7~d!, we show a typical destruction of noisyp4 in
the presence of a relatively strong noise (s50.005). After
destruction, the transients jump~shown by an arrow! to pe-
riod 1 (p1). Figure 8 shows another similar example starti
from noisy period 25 (p25). Figure 8~a! shows the bifurca-
tion diagram of the uncontrolledp25 branch~around period

FIG. 8. ~a! Uncontrolled period-25 branch (p25) around period 5
(p5) in the presence of noise (s50.001). Sampling period is five
~b! Uncontrolled period 5 branch (p5) around period 1 (p1) in the
presence of noise (s50.005).~c! Controlledp25 gets destroyed and
the system jumps~shown by an arrow! to the period 5;m0

50.142;n50.005;s50.001.~d! Controlledp5 gets destroyed and
the system jumps~shown by an arrow! to period 1;m050.12; n
50.005; s50.005.
02621
e

5! in the presence of noise (s50.001). As we increase th
value ofm0 beyond the boundary crisis threshold ofp25, the
transients converge top5. Since, the basin of period 5 i
comparatively larger, thep5 branch can withstand a rela
tively stronger noise. Figure 8~b! shows the bifurcation dia-
gram of p5 branch around period 1 in the presence of
stronger noise (s50.005). Beyond the boundary crisis o
p5, the transients settle to period 1@Fig. 8~b!#. We demon-
strate the effect of the control on noisyp25 by introducing the
modulation overm. By increasing the control amplitude (h),
we observe a destruction ofp25 @Fig. 8~c!# and consequen
transition to period 5~shown by an arrow!. A similar destruc-
tion can also be observed in the case of noisyp20 and p15.
Each destruction would be followed by a transition top5.
Next, noisyp5 can also be destroyed by increasing the co
trol amplitudeh when the value ofm0 is kept fixed any-

FIG. 9. ~a! Sequence of controlled destructions, starting fro
noise-free p16. Control (h50.0025,n50.005,m050.142) is
switched onp16 after 1000 iterations~shown by the left arrow!.
After destruction ofp16, the transients converge top4. Control
amplitude is increased to 0.079 after next 2000 steps of iterat
~shown by the right arrow!. p4 is destroyed and the iterations con
verge to period 1.~b! Same as~a! in the presence of noise (s
50.001).
4-7
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where, including in the parameter subintervals wh
thesecond-order secondary cascades, viz.,p25, p20, andp15
exist. In Fig. 8~d!, we show a typical destruction of noisyp5
even in the presence of a stronger noise (s50.005). After
the destruction ofp5, the transient jumps~shown by an ar-
row! to period 1.

In Figs. 9 and 10 we show some typical examples of h
the controlled transition from a period-n (n.1) branch to
period-1 branch takes place in time via sequence of sec
ary cascades. We will show such cases with, as well as w
out, noise. First we consider the case of noise-freep16 @Fig.
9~a!#. The control amplitude is chosen higher than the
struction threshold ofp16 and lower than the destructio
threshold ofp4. The control is applied onp16 at 1000th it-
eration ~shown by the left arrow!. p16 is destroyed and the
transients converge top4. Next, after 2000 iterations, th
control amplitude is increased~shown by the right arrow! to

FIG. 10. ~a! Sequence of controlled destructions, starting fro
noise-free p25. Control (h50.0015,n50.005,m0520.305) is
switched onp25 after 1000 iterations~shown by the left arrow!.
After destruction ofp25, the transients converge top5. Control
amplitude is increased to 0.062 after next 2000 steps of iterat
~shown by the right arrow!. p5 is destroyed and the iterations co
verge to period-1.~b! Same as~a! in the presence of noise (s
50.001).
02621
e

d-
h-

-

a value higher than the destruction threshold of period
(p4). Consequently, period 4 is also destroyed and the tr
sients converge to period 1. In Fig. 9~b!, we show a similar
transition from a noisy period 16. The control amplitude a
control frequency are identical to those in Fig. 9~a!. We find
that in the presence of noise also, the scenario is simila
the previous case. Figure 10 shows another example sta
from a noise-freep25. The chosen control amplitude i
higher than the destruction threshold ofp25 and lower than
the destruction threshold ofp5. The control is switched on
p25 at 1000th iteration@Fig. 10~a!#. p25 is destroyed and the
transients converge top5. Next, after 2000 iterations, the
control amplitude is increased~shown by the right arrow! to
a value higher than the destruction threshold of period
Consequently, period 5 is also destroyed and the transi
converge to period 1. In Fig. 10~b!, we show a similar tran-
sition from a noisy period 25. The control amplitude a

ns

FIG. 11. Straight transition to period-1 branch after controll
destruction of the second-order cascades.~a! Control (h50.04,n
50.005,m050.142) is applied on noise-freep16 after 1000 steps
~shown by the arrow!. p16 is destroyed and the transients conver
to p1. ~b! Same as~a! in the presence of noise (s50.001). ~c!
Control (h50.05,n50.005,m0520.305) is applied on noise-free
p25 after 1000 steps~shown by the arrow!. p25 is destroyed and the
transients converge top1. ~d! Same as~c! in the presence of noise
(s50.001).
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control frequency are kept identical to those in Fig. 10~a!.
We find that in the presence of noise also, the scenari
similar.

Next we show some typical examples of a direct tran
tion to period 1 after a controlled destruction of the seco
ary cascades. Such phenomena occur when the control
plitude is set higher than the destruction threshold of
respective first-order cascade. Figure 11~a! shows the case
when the control (h50.04) is applied on a noise-freep16
after 1000 steps of iterations~shown by the arrow!. Since the
value of the control amplitude is beyond the destruct
threshold of the respective first-order secondary casc
(p4), not only period 16 is destroyed, but also the transie
straightway converge to period 1. Similar phenomena oc
in the presence of noise (s50.001) as well@Fig. 11~b!#.
Figure 11~c! shows the controlled destruction of a noise-fr

FIG. 12. Applicability of the control in the presence of relative
strong noise which spontaneously induces transition.~a! Noise (s
50.01) leads to a transition from period 16 to period 4. Cont
(h50.04,n50.005,m050.142) is applied~shown by the arrow! on
p4 after 1000 steps of iterations.p4 is destroyed and the transien
converge to period 1.~b! Noise (s50.01) leads to a transition from
period 25 to period 5. Control (h50.05,n50.005,m0520.305) is
applied~shown by the arrow! on p5 after 1000 steps of iterations
p5 is destroyed and the transients converge to period 1.
02621
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period 25 (p25). The control amplitude is set much highe
than the destruction threshold ofp5. Therefore, after the de
struction ofp25, the transients settle down to period 1. Sim
lar phenomena also occur in the presence of noises
50.001) @Fig. 11~d!#.

In Fig. 12 we show the applicability of the control in th
presence of a relatively strong noise that can induce a sp
taneous transition from one state to another. In Fig. 12~a! we
consider the case starting from period 16 (p16) when noise
(s50.01) induces a transition to period 4 (p4). The basin of
period 4 is broad enough to deter further transition to a
other basin. In such a case, control needs to be applied
to destroy the lower-order cascades. Control (h50.04,
n50.005) is applied~shown by the arrow! on p4 at 1000th
step of iterations.p4 is destroyed and the transients settle
period 1. In Fig. 12~b!, we show a similar example startin
from period 25 (p25). Noise (s50.01) induces a transition
to period 5 (p5). Control (h50.05) is applied~shown by an
arrow! on p5 after 1000 steps of iterations.p5 is destroyed
and the transients converge to period 1. Thus, if the nois
capable of inducing a transition from the basins of high
order secondary cascades to the basins of lower-order
ondary cascades, then the control modulation is require
destroy these lower-order secondary cascades, and brin
system to period-1 branch.

To conclude, we have demonstrated that by a slow
weak periodic modulation to some system parameter,
can destroy any higher-order cascade and induce a trans
to a coexisting lower-order cascade. This method can be
fectively applied to bring the system from any periodn
branch to period-1 branch, thus leading to a control
monostability. Therefore, if required, such a control may a
extend the operating regime. As such this method does
need anya priori knowledge about the destruction thresho
of the various secondary cascades. Although, such kno
edge could be helpful to direct a straight transition top1
branch. We have also shown the applicability of the meth
in the presence of noise. Noise of adequate strength can
induce a transition from higher-order secondary cascade
lower-order secondary cascades. Under such circumstan
control needs to be applied to bring the system from
lower-order cascades to period-1 branch.

We may also state that by an appropriate choice of
control parameter values, one can make devices with a w
defined number of coexisting states. For instance, if the c
trol amplitude lies in between the destruction threshold
first-order and second-order cascades, one can get a
trolled bistable system. We believe such an approach wo
be helpful for avoiding multistability when the system
designed for a bistable device. In principle, if the effect
noise is weak, by a suitable choice of control parameter v
ues, one may even design a controlled ‘‘n-stable’’ device,
i.e., a system that supports coexistence ofn(n51,2,3, . . . )
stable states.

We are grateful to Dr. N. Venkatramani, L&PT division
BARC, and Professor S. H. Patil, Department of Physics,
Bombay, for their encouragement of our work.
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